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Abstract The effect of vertical wall vibrations on two-phase channel flow is examined. The basic flow
consists of two superposed fluid layers in a channel whose walls oscillate perpendicular to themselves
in a prescribed, time-periodic manner. The solution for the basic flow is presented in closed form for
Stokes flow, and its stability to small periodic perturbations is assessed by means of a Floquet analysis. It
is found that the pulsations have a generally destabilizing influence on the flow. They tend to worsen the
Rayleigh–Taylor instability present for unstably stratified fluids; the larger the amplitude of the pulsations,
the greater the range of unstable wave numbers. For stably stratified fluids, the pulsations raise the growth
rate of small perturbations, but are not sufficient to destabilize the flow. In the latter part of the paper,
the basic flow for arbitrary Reynolds number is computed numerically assuming a flat interface, and the
motion of the interface in time is predicted. The existence of a time-periodic flow is demonstrated in which
the ratio of the layer thicknesses remains constant throughout the motion.

Keywords Stokes flow · Interfacial flow · Instability · Channel flow

1 Introduction

The study of twin and multi-component fluid systems forms a very large area of research. Applications
include fluid mixing, oil recovery from lubricated pipelines, and airflow in the lungs. The effect of wall
oscillations on the stability of two-layered flows has received the attention of a number of workers. Most
previous studies have focussed on horizontal-wall oscillations, which have either a stabilizing or destabiliz-
ing influence, depending on the values of the controlling parameters. Yih (1) considered the stability of a
layer of fluid moving on a flat wall executing simple harmonic motion in its own plane. This was extended
by von Kerczek (2) to flow down a vertical plate performing a similar motion. Coward and Papageorgiou
(3) studied oscillatory Couette flow of two superposed layers in a channel whose upper wall is translating
parallel to itself with both a steady and an oscillatory component. Working under the assumption of long
waves, they applied Floquet theory to show that a time-dependent modulation can entirely stabilize a
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two-layer Couette flow which is unstable under steady conditions. Halpern and Frenkel (4) considered the
nonlinear stability characteristics for the same problem but when the motion of the upper wall is purely
oscillatory. The effect of oscillations on core-annular flow has also been studied (e.g., Coward et al. (5),
Halpern and Grotberg (6)).

The effect of vertical wall oscillations on interfacial stability appears to have received very little atten-
tion. In this article, we investigate the combined and repeated effects of stretching and contracting on
a two-layered flow confined between a pair of vibrating walls. Recent work by Pozrikidis and Blyth (7)
showed that the presence or absence of a wall in a stretching flow can make an important difference to
the stability of superposed fluid layers. When two semi-infinite, unstably stratified fluids are exposed to
a straining flow, the gradual increase in the wave length of a disturbance first acts to produce a nega-
tive growth rate before the effect of the density stratification takes over and destabilizes the flow. So an
extensional flow is unable to suppress the Rayleigh–Taylor instability which occurs for quiescent layers.
If the direction of flow is reversed, the wave length of a disturbance tends to contract. An initial period
of transient growth is followed by long-term decay as surface tension dominates and stabilizes the flow.
Including a lower wall significantly alters the stability; in this case, an elongational flow is able to stabilize
interfacial waves.

Our configuration consists of two superposed layers of viscous fluid in a channel whose width changes
as a periodic function of time. Each period includes both a stretching and a drawing motion and it is not
clear how this will affect the stability of the flow. When the walls move towards each other, the induced
squeezing flow produces a stretching effect and small-amplitude disturbances at the interface might naïvely
be expected to grow for unstably stratified layers. Similarly, the drawing motion obtained when the walls
are pulled apart might be expected to calm interfacial waves. However, the combined effects of both
stretching and contracting and the presence of the channel walls are likely to have important consequences
for the flow stability which are difficult to predict in advance. We perform a linear stability analysis at zero
Reynolds number and use a Floquet method to compute the growth rates of linear waves. At arbitrary Rey-
nolds number, we investigate the flow produced by either a purely squeezing or purely drawing motion,
and by the time-periodic pulsation of the channel walls. Working on the assumption that the interface
remains flat, we compute the flow under a variety of parametric conditions, and pay particular attention to
the trajectory of the interface as the flow evolves.

The layout of the paper is as follows. In Sect. 2, we formulate the linear stability problem for Stokes
flow. In Sect. 3, we compute the basic flow numerically for finite Reynolds number on the assumption of a
flat interface. Finally, in Sect. 4, we discuss our findings.

2 Channel flow at zero Reynolds number

We consider the motion of two superposed fluid layers in a channel when the walls of the channel move up
and down in a prescribed manner so that the channel width is a known function of time. The lower fluid,
labelled fluid 1, has density ρ1 and viscosity µ1, and the upper fluid, labelled fluid 2, has density ρ2 and
viscosity µ2. Gravity acts in the vertical direction perpendicular to the channel walls. In the unperturbed
configuration, the interface between the layers is assumed to be perfectly flat and parallel to the walls.
The walls are located at y = ±H(t), where H(t) is a specified function of time. The interface is located
at the unknown position y = h(t), where h(t) is to be found as part of the solution. The horizontal and
vertical velocity components for the unperturbed flow in each fluid, denoted by uj and vj respectively for
j = 1, 2, are given in terms of the unperturbed streamfunctions by the usual relations, uj = ∂ψj/∂y and
vj = −∂ψj/∂x. Following Hall and Papageorgiou (8), we assume a linear dependence on the horizontal
coordinate and write
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ψj = x Vj(y, t). (2.1)

At zero Reynolds number, the velocity and pressure satisfy the steady Stokes equations of fluid motion.
When a flat interface is assumed, the solution in either fluid is given by

Vj = Ḣ
H3�(t)

[
β0j(t)+ β1j(t)y + β2j(t)y2 + β3j(t)y3

]
(2.2)

for j = 1, 2, and

β0j = H3(1 − λ)[ (−1)j(λ− 1) r4 + 4(−1)j(1 + λ) r3 + 6m3−j r2

+4(λ− 1) r + (1 + λ) ],
β1j = 12H2mj

[
(−1)j+1(1 − λ) r2 + (1 − λ) r − 2m3−j

]
,

β2j = 6Hmj(1 − λ)(r2 − 1), (2.3)

β3j = 4mj
[
(λ− 1) r + (1 + λ)

]
,

� = (λ− 1)2 r2(r2 + 6)+ 4(λ2 − 1) r(r2 + 1)+ (1 + 14λ+ λ2),

where r(t) = h(t)/H(t) and the viscosity ratio λ = µ2/µ1, with the additional definitions m1 = λ and
m2 = 1. The solution (2.2) satisfies no-slip and no-penetration at the moving walls,

V1(−H, t) = Ḣ,
∂V1

∂y
(−H, t) = 0, V2(H, t) = −Ḣ,

∂V2

∂y
(H, t) = 0, (2.4)

together with conditions of continuity of velocity and stress at the flat interface. It can be shown that, at
a fixed x-station, the axial velocity field, uj, is of the same form as that for plane Poiseuille flow of two
superposed layers, with the flux in each layer a function of time dependent on H(t).

The pressure fields in the two fluids are given by

p(0)1 = µ1

2
x2 ∂

3V1

∂y3 − ρ1gh − µ1
∂V1

∂y
+ P0,

p(0)2 = µ2

2
x2 ∂

3V2

∂y3 − ρ2gh − µ2
∂V2

∂y
+ 24Ḣ

H�
µ1λ(r

2 − 1)(λ− 1)+ (ρ2 − ρ1)gh + P0,
(2.5)

where P0 is a reference pressure. The pressure undergoes a jump across the interface given by

p(0)1 (y = h)− p(0)2 (y = h) = −48Ḣ
H�

µ1λ(r
2 − 1)(λ− 1). (2.6)

When the viscosities are equal and λ = 1, Eq. 2.2 reduces to the time-periodic Stokes flow solution
given by Hall and Papageorgiou (8) for a single fluid. For general λ �= 1, the kinematic condition at the
interface yields the evolution equation for the interface position, h(t), given by dh/dt = v(h, t) = −V1(h, t).
Equivalently,

dr
dt

= − Ḣ
H�(t)

(λ− 1)2(r2 − 1)(r − w)(r − 1/r∗)(r − r∗), (2.7)

where w = (1 + λ)/(1 − λ), and

r∗ = 1 − λ1/2

1 + λ1/2
. (2.8)

Evidently, if r = r∗, then dr/dt = 0 for all time and the ratio of the two layer thicknesses, given by

1 − r∗

1 + r∗ = λ1/2 (2.9)
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Fig. 1 Sketch of the periodic perturbation to the two-layer flow. The unperturbed interface is at ζ = 0. The unit normal n
and unit tangent t point into the lower fluid and in the direction of increasing arc length, respectively

remains constant throughout the motion. In general, (2.7) is to be integrated subject to a suitable initial
condition r(0) = r0. Carrying out the integration, we find

(r − r∗)2 (r − 1/r∗)2

(r2 − 1) (d − r)3
= cH(t), (2.10)

where c is a constant determined by the initial condition. Evidently, the movement of the interface is
synchronous with the wall motion, as was to be expected in the absence of inertia. For an oscillatory flow,
with H(t) a periodic function of time, the interface must return to its starting position after one period in
accordance with the reversibility of Stokes flow. If r0 > r∗, for example, the interface remains trapped in
the region (r∗, 1) throughout the motion.

To investigate the stability of the two-layer channel problem under conditions of Stokes flow, we con-
sider the effect of introducing a spatially periodic disturbance in the interface shape. In the ensuing analysis
it is convenient to change to a new frame of reference in which the unperturbed, flat interface is fixed.
Accordingly, we introduce the new vertical coordinate, ζ , defined so that ζ = y − h(t). In the new frame,
illustrated in Fig. 1, the unperturbed interface is positioned at ζ = 0, and the upper and lower walls are
located at ζ = −d1(t) and ζ = d2(t) respectively, where

d1 = H + h, d2 = H − h. (2.11)

The interface is deflected to a new position given byζ = f (x, t) = ε η(x, t), where ε is a small parameter. To
study a spatially periodic deflection, we assume that

η = A1(t) cos[k(t)x], (2.12)

where the wave amplitude, A1(t), and the wave number, k(t), are both functions of time. In response
to the perturbation, the stream functions in the two fluids are expanded by writing ψj = ψ

(0)
j (x, ζ , t) +

ε ψ
(1)
j (x, ζ , t)+ · · · , where the basic flow is given by

ψ
(0)
j (x, ζ , t) = x

[
Vj(ζ , t)+ ḣ

]
, (2.13)

and Vj is given in (2.2). The vertical fluid velocity at the unperturbed interface, ζ = 0, is zero for the
unperturbed flow.

Following Pozrikidis and Blyth (7), we decompose the disturbance stream function in either fluid into a
periodic part and a part which is odd in x by writing

ψ
(1)
j (x, ζ , t) = A1

[
φj(ζ̂ ) sin[k(t)x] + x̂ χj(ζ̂ ) cos[k(t)x]

]
, (2.14)

where x̂ = kx and ζ̂ = kζ . The second, aperiodic term is included to ensure continuity of the horizontal
velocity perturbation at the disturbed interface. At zero Reynolds number, the disturbance stream function
satisfies the biharmonic equation in each fluid. The general solutions are
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φj = a1j(t)e
ζ̂ + a2j(t)ζ̂eζ̂ + a3j(t)e−ζ̂ + a4j(t)ζ̂e−ζ̂ + φ̂j(ζ̂ , t),

χj = α1j(t)e
ζ̂ + α2j(t)ζ̂eζ̂ + α3j(t)e−ζ̂ + α4j(t)ζ̂e−ζ̂

(2.15)

for j = 1, 2, where the functions aij, αij, i = 1, . . . , 4 are to be found, and

φ̂j = − 1
k

e−ζ̂
(

3
2

+ 2 ζ̂ + ζ̂ 2
)
α4j + 1

k
eζ̂

(
3
2

− 2 ζ̂ + ζ̂ 2
)
α2j. (2.16)

We write the corresponding perturbation pressure fields in the form

p(1)j (x, ζ , t) = A1 µj

(
qj(ζ , t) cos[k(t)x] + x̂ Qj(ζ , t) sin[k(t)x]

)
(2.17)

for j = 1, 2. By substituting (2.17) in the horizontal component of the Stokes equation and integrating, we
find

qj = 1
k

[(d3χj

dζ 3 + k2 dχj

dζ

)
−

(d3φj

dζ 3 − k2 dφj

dζ

)]
, Qj = 1

k

(d3χj

dζ 3 − k2 dχj

dζ

)
. (2.18)

The no-slip and no-penetration conditions at the walls require that

φj = χj = ∂φj

∂ζ
= ∂χj

∂ζ
= 0 (2.19)

at ζ = −d1 for j = 1 and ζ = d2 for j = 2. These conditions yield 8 relations between the 16 unknown
functions aij, αij, i = 0, . . . , 3. The horizontal interfacial force balance requires
⎡
⎣2µj

∂η

∂x

(∂u(0)j

∂x
− ∂v(0)j

∂ζ

)
− µj

(∂u(1)j

∂ζ
+ ∂v(1)j

∂x
+ η

∂2u(0)j

∂ζ 2

)⎤
⎦

1

2

= 0, (2.20)

where [·]1
2 = [·]1 −[·]2. Substitution in the preceding expressions yields two relations between the unknown

coefficients. Denoting the surface tension by γ0, the vertical interfacial force balance requires

p(1)2 − p(1)1 + 2µ1
∂v(1)1

∂ζ
− 2µ2

∂v(1)2

∂ζ
+ (1 − δ)ρ1gη = γ0

∂2η

∂x2 , (2.21)

where δ = ρ2/ρ1 is the density ratio, g is the acceleration due to gravity, and all terms evaluated at the
unperturbed interface ζ = 0. Substituting in the preceding expressions, we derive two further relations
between the unknown coefficients. Continuity of the horizontal and vertical velocities at the interface
demands

u(1)1 + η
∂u(1)0

∂ζ
= u(2)1 + η

∂u(2)0

∂ζ
, v(1)1 + η

∂v(1)0

∂ζ
= v(2)1 + η

∂v(2)0

∂ζ
, (2.22)

where all terms are evaluated at ζ = 0. These relations provide a further four conditions on the unknowns.
We now have available 16 conditions for the 16 unknowns, which we compile into the matrix system

M(t) · w = b(t), (2.23)

where M is a known 16 × 16 matrix, the solution vector w = (a11, . . . ,α42)
T, containing all of the unknown

coefficients, and b is the vector of inhomogeneous terms. It will be noted that Eq. 2.23 is independent of A1.
The kinematic condition at the interface requires that

∂η

∂t
+ u(0)1

∂η

∂x
− η

∂v(0)1

∂ζ
− v(1)1 = 0 (2.24)
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with all terms evaluated at ζ = 0. Applying the previous results in (2.24), we derive the evolution equation
for the wave number,

dk
dt

+ 24Ḣ
H�(t)

λ(r2 − 1) k + [α11 + α31] k2 = 0, (2.25)

and the evolution equation for the interfacial perturbation amplitude,

dA1

dt
+ L(t)A1 = 0 (2.26)

with

L(t) = 24Ḣ
H�(t)

λ(r2 − 1)+ k(α11 + α31 + a11 + a31)+ 3
2
(α21 − α41), (2.27)

where r = h/H = (d2 − d1)/(d2 + d1) and� is given in (2.3). The coefficients α11, α31, a11 and a31 are func-
tions of k but are independent of A1. Thus, the evolution equation for k is decoupled from the evolution
equation for A1.

To provide a check on the above formulation, we consider the case of equal-density fluids confined
between stationary walls and set Ḣ ≡ 0 for all t. According to Yih (9), a flat interface between two qui-
escent layers in a channel is stable at zero Reynolds number. Blyth and Pozrikidis (10) showed that the
growth rate of a small perturbation in a two-layered channel flow is independent of the structure of the
basic flow, and depends solely on the local shear rates just above and below the interface. Solving the linear
system (2.23), we find that all but the first term in (2.26) vanishes, implying a constant wave number. The
first equation in (2.23) reduces to dA1/dt +σA1 = 0, where the growth rate σ = k(a11 + a31). Substituting
the known values of a11 and a31, we obtain perfect agreement with the results of Blyth and Pozrikidis (10).

To focus on the case when H is a periodic function of time, throughout the remainder of this section we
take

H(t) = H0(1 +� cos nt), (2.28)

where H0, n, and � are real constants, with 0 < � < 1. We assume that the timescale of the pulsations
is sufficiently large compared with the viscous diffusion time, 1/n � H2

0/ν, to justify the omission of the
unsteady term in the Stokes equations. Defining a Reynolds number based on the pulsation frequency,

R = ρnH2
0

µ1
, (2.29)

this is equivalent to assuming that R � 1. Under this assumption, the basic flow is described by (2.2) and
is periodic in time with period T = 2π/n. According to Floquet theory (e.g. (11, Chapter 5.4)), a small
perturbation from a time-periodic solution may be expressed as the product of an exponentially growing
part and a time-periodic part. Given the form of (2.14), we may therefore write

A1 = estA(t) (2.30)

for constant s, where A(t) is a periodic function of time such that A(t + T) = A(t). Consequently, the
coefficients aij(t), αij(t), for i = 1, . . . 4 and j = 1, 2, are all periodic with period T. It follows from the linear
system (2.23) that the wave-number k(t)must also be periodic with period T. Therefore the solution to the
wave-number evolution equation (2.25) must also turn out to be periodic in time with the same period.
This has been confirmed numerically. The stability is determined by calculating the Floquet exponent s:
If s > 0, the flow is unstable, and if s < 0, the flow is stable. Dimensional analysis shows that the stability
characteristics are governed by the viscosity ratio λ, the density ratio δ, and the capillary and Bond numbers
defined by

Ca = µ1H0n
γ0

, Bo = H2
0 |ρ1 − ρ2|g

γ0
. (2.31)
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To assess the stability of the system for different parameter values, we integrate equations (2.25) and
(2.26) forward in time numerically using second order Runge–Kutta integration. At each part of the inte-
gration step, the linear system (2.23) is solved to find w. To compute the Floquet exponent, the equations
are integrated from t = 0 over a period of length T. From (2.30),

s = 1
T

log
{A1(T)

A1(0)

}
= − 1

T

∫ T

0
L(t)dt. (2.32)

Since L(t) is periodic with period T, it follows that the Floquet exponent is independent of the frequency
of the pulsations, n. To provide a check on the calculation of the Floquet exponent, we consider the case
of equal-density fluids, δ = 1, and confirm that the transformation λ → 1/λ, r0 → −r0, which corresponds
to turning the channel upside-down, does not affect the computed value of the growth rate.

When the fluids have the same density, the interface is stable under all conditions. However, the pul-
sations tend to lower the decay rate of linear perturbations, and in this sense they are destabilizing.
The dimensionless growth rate s∗ ≡ (µ1H0/γ0)s, where H0 = H(0), is shown in Fig. 2 for the sample
case δ = 1, λ = 0.5, r0 = 0.5 and Ca = 2.0. Results are plotted over a range of reduced initial wave
numbers k0H0, where k0 = k(0), for a number of different wall amplitudes. The growth rates increase
as the wall amplitude increases, and so the pulsations have a destabilizing influence on the flow. The
effect of varying the viscosity stratification is shown in Fig. 2(b). Increasing λ lowers the decay rate of
perturbations and in this sense has a destabilizing effect. To assess the effect of the wall pulsations
on the Rayleigh–Taylor instability, in Fig. 3(a) we plot s∗ against k0H0 for the case δ = 1.5, λ = 0.5,
r0 = 0, Ca = 2.0 and Bo = 0.5. In this figure, the unperturbed interface lies midway between the
walls at t = 0, so that r0 is zero. The heavier fluid lies on top of the lighter fluid yielding instability
over a range of wave numbers between zero and the critical cut-off value kc. For smaller wave num-
bers, the pulsations lower the growth rate of small disturbances and so promote the stability of the
flow. For larger wave numbers close to the cut-off value, the pulsations increase the growth rate thereby
promoting the instability. The dependence of the critical wave number kc on the amplitude of the vibra-
tions is shown in Fig. 3(b). Initially, it increases from its value for a static channel, with � = 0, before
reaching a peak at � ≈ 0.23. Thus, the effect of the pulsations is to extend the range of unstable wave
numbers.
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Fig. 2 Dimensionless growth rate s∗ for equal density fluids, δ = 1 and Ca = 2.0: (a) s∗ versus reduced initial wave number
k0H0 when λ = 0.5, r0 = 0 for various �; (b) s∗ versus viscosity ratio λ for r0 = 0.5, � = 0.1 and k0H0 = 1.0
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Fig. 3 The case δ = 1.5, λ = 0.5, r0 = 0, Ca = 2.0 and Bo = 0.5: (a) Floquet exponent s∗ against reduced initial wave number
k0H0 for a range of wall amplitudes, �. (b) Variation of critical wave number kc with wall amplitude �

3 Channel flow at arbitrary Reynolds number

In this section we consider the two-fluid channel-flow problem for general Reynolds number. The fluids
are assumed to be of equal density, ρ, and the interface is assumed to be flat and to remain parallel to the
walls at all times. As in Sect. 2.1, the flow domain is −H(t) ≤ y ≤ H(t), where H(t) is a prescribed function
of time and the flat interface is located at y = h(t).

We seek a solution of stagnation-point form in which the horizontal velocity depends linearly on the
horizontal coordinate. Specifically, we take

ψj = xVj(y, t) (3.1)

for j = 1, 2. Using 1/n as a reference time scale and the mean channel thickness H0 as the reference length,
we nondimensionalize by writing t = nt∗, (x, y) = H0(x∗, y∗), H = H0H∗, and ψj = (nH2

0) ψ
∗
j , where

asterisks indicate dimensionless variables. We map the flow field onto the fixed domain [−1, 1] by introduc-
ing the new coordinate η = y/H(t). When the asterisks are dropped for convenience, the Navier–Stokes
equation yields the following system for the flow in each fluid,

∂3Vj

∂η2∂t
= Ḣ

H

(
2
∂2Vj

∂η2 + η
∂3Vj

∂η3

)
+ 1

H

(
Vj
∂3Vj

∂η3 − ∂Vj

∂η

∂2Vj

∂η2

)
+ mj

H2R

∂4Vj

∂η4 , (3.2)

where j = 1, 2, m1 = 1 and m2 = λ = µ2/µ1. The Reynolds number R was defined in (2.29). Taking the
limit R → 0 reduces the problem to that studied in Sect. 2. The boundary conditions on (3.2) are no-slip
and no-penetration at the walls, (2.4), together with continuity of velocity at the interface,

V1 = V2,
∂V1

∂η
= ∂V2

∂η
(3.3)

at η = r(t), where r(t) = h(t)/H(t). Continuity of tangential stress at the interface requires that

∂2V1

∂η2 = λ
∂2V2

∂η2 (3.4)

at η = r(t). The solution for Stokes flow, valid at R = 0, is given by (2.2). The dimensionless kinematic
condition at the interface leads to the obvious evolution equation for the interfacial position h = rH,

d
dt
(rH) = −V1(r, t). (3.5)

Finally, if we integrate (3.2) across the moving interface from η = r−(t) up to η = r+(t), taking care to
account for the time-dependent limits, and make use of (3.5) to simplify, we obtain the jump condition
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∂3V1

∂η3 = λ
∂3V2

∂η3 (3.6)

at η = r(t).
In the following subsection, we discuss periodic solutions for small values of�. Thereafter, we introduce

the numerical method to solve the system for arbitrary values of R and �, and present some results.

3.1 Small-amplitude periodic solution

At zero Reynolds number, we showed in Sect. 2 that the flow is time-periodic with the same period as
the wall motion. When inertia is present, we do not in general expect the interfacial trajectory to follow a
periodic cycle. For a specific value of r, however, we might expect to be able to find a solution where the
layer thickness ratio remains constant throughout the motion, and the flow is periodic in time. For Stokes
flow, this occurs when r = r∗, where r∗ is given by (2.8). To check this possibility at finite Reynolds number,
we seek a periodic solution with r constant. To simplify the analysis, we make the further assumption that
the amplitude of the wall oscillations is small, so � � 1.

First, we make the transformation Vj = −ηḢ + H3ψj, for j = 1, 2, and substitute in (3.2) to obtain

∂3ψj

∂η2∂t
= H2

(
ψj
∂3ψj

∂η3 − ∂ψj

∂η

∂2ψj

∂η2

)
+ λj

H2R

∂4ψj

∂η4 (3.7)

with the boundary conditions

ψ1(−1, t) = 0,
∂ψ1

∂η
(−1, t) = Ḣ

H3 , ψ2(1, t) = 0,
∂ψ2

∂η
(1, t) = Ḣ

H3 . (3.8)

The conditions on ψj at the interface are identical to (3.3), (3.4) and (3.6). Assuming that r is constant, we
observe that the kinematic condition (3.5) requires

ψj(r, t) = 0. (3.9)

To obtain the solution for small �, we expand in either fluid by writing

ψj(η, t) = � e2itψ
(0)
j (η)+�2

[
e4itψ

(1)
j (η)+ ψ

(1s)
j (η)

]
+ · · · . (3.10)

The steady component ψ(1s)
j at first order is driven by the nonlinear terms on the right-hand side of (3.7).

Substituting in (3.7) and (3.8), we may write down a sequence of linear problems at successive orders to
solve for ψ(0)j and so on. At leading order, we find that it is possible to find a solution satisfying the wall
boundary conditions (3.8), and the interfacial conditions (3.3), (3.4) and (3.6). However, it is only possible
to satisfy (3.9) if r = r∗, where r∗ is given by (2.8) and which depends solely on the viscosity ratio of the two
fluids. Thus the periodic Stokes solution (2.2) with r = r∗ extends to finite Reynolds numbers for small wall
amplitudes. In Sect. 3.3, we show numerically that periodic solutions also exist for arbitrary values of �.

3.2 Numerical method for arbitrary wall amplitude

In this section, we describe the numerical method used to compute solutions for any wall amplitude at
arbitrary Reynolds number. It will be convenient to transform to a new coordinate system in which the
position of the interface is fixed in time. To this end, we introduce the time-dependent piecewise-linear
mapping

η = r + (1 ± r)ζ , (3.11)
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where the plus sign applies for η < r(t) and the minus sign applies for η > r(t). In the transformed ζ -space,
the channel walls are located at ζ = ±1, and the interface is located at ζ = 0.

The numerical method is based on the Crank–Nicolson scheme. Although it is similar to that employed by
Hall and Papageorgiou (8) for a single fluid, the complications of including a moving interface merit a care-
ful description here. A uniform grid is used in the transformed space with mesh points at ζi = −1+(i−1)δζ ,
for i = 1, . . . 2N+1, where δζ = 1/N is the step length. The solution at grid point ζi at time level tn is denoted
by Vn

j,i in fluid j = 1, 2. To advance forward one time step, δt, a discretized form of the momentum equation
(3.2) is applied at all of the interior points excluding the interfacial point i = N + 1. We approximate the
spatial derivatives using centred differences. The linear terms in (3.2) are centered about the mid-point
tn + 1

2δt in the usual way for Crank–Nicolson integration. Since the coefficient of the time-derivative
term in the transformed form of (3.2) is time-dependent, it must be evaluated at t + 1

2δt to preserve the
second-order temporal accuracy of the scheme. At the preliminary stage, the nonlinear terms are treated
explicitly at the previous time step, tn. The first of the matching conditions (3.3) implies that Vn

1,N+1 =
Vn

2,N+1. Introducing the fictitious points Vn
1,N+2 and Vn

2,0, we derive two further conditions by approximat-
ing the second equation of (3.3) and (3.4), using centred differences about the interfacial point ζN+1. These
are solved simultaneously to eliminate the two fictitious points. The Neumann boundary conditions at the
two walls are dealt with in a similar way.

Combining the discretized momentum equations and boundary conditions, we form the matrix system,

A · Vn+1 = B · Vn + N, (3.12)

where Vn = (Vn
1,2, . . . , Vn

1,N , Vn
2,N+2, . . . , Vn

2,2N)
T, excluding the unknown interfacial value Vn

1,N+1. The
(2N − 2) × (2N − 2) pentadiagonal matrices A and B involve knowledge of the unknown value hn+1 ≡
r(tn+1)H(tn+1) and the known value hn. The vector N incorporates the nonlinear terms evaluated at the
current time step tn. The matrix system (3.12) is to be solved simultaneously with the discretized form of
the evolution equation (3.5),

hn+1 = hn − 1
2δt

(
Vn+1

1,N+1 + Vn
1,N+1

)
. (3.13)

To advance to the next time step, tn+1, we first guess the unknown interfacial value Vn+1
1,N+1. Next, we

solve (3.12) and (3.13) simultaneously using a modified form of the Thomas algorithm suitable for pen-
tadiagonal systems (e.g., (12, Chapter 3)). To preserve the second-order spatial and temporal accuracy of
the scheme, we centre the nonlinear terms at the mid-point tn + 1

2δt and iterate in the manner described
by Hall and Papageorgiou (8). Typically, only one or two iterations are required to achieve an acceptable
level of convergence. The process is repeated and the initial guess for Vn+1

1,N+1 is refined using Newton’s
method until the jump condition (3.6) is satisfied to within a prescribed tolerance.

The numerical method was checked in a variety of different ways. First, we recomputed results for a
single fluid using the method described by Hall and Papageorgiou (8), and compared with the results
produced by the present code with λ = 1. In Fig. 4(a), we show the trajectory, r(t), plotted against time
when the forcing function H(t) = 1 + 0.25 cos 2t. Throughout the rest of the paper, unless otherwise
stated, computations were performed with N = 120 grid points in each fluid with a time step δt = 0.001.
Higher-resolution calculations confirmed the accuracy of the results shown. Further checks were carried
out under the same conditions by computing the lower-wall shear for two different choices of interfacial
starting position, r0. In the case of equal fluid viscosities, the lower-wall shear is independent of the choice
of r0, and this was verified during a number of simulations. For two fluids, a check on the method was
performed at small Reynolds number to compare with the Stokes flow results of Sect. 2. Figure 4(b) shows
the interfacial trajectory for the case λ = 0.5 and R = 0.1 with the forcing function H(t) = 1 + 0.25 cos 2t.

As an additional check, we confirmed that the results are unchanged under the transformation λ to 1/λ
and r0 to −r0, which effectively corresponds to turning the channel upside down.
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Fig. 4 The interface position r(t) for wall forcing H(t) = 1 + 0.25 cos 2t. (a) For a single fluid, λ = 1, with R = 20. The solid
line is the present result, and the circles represent the result computed using Hall and Papageorgiou’s method. (b) For two
fluids with λ = 0.5. The solid line shows the result for R = 0.01 and the circles show the result for Stokes flow

3.3 Results

To present our results for two superposed fluid layers, we begin by considering squeezing or drawing flow,
during which the channel walls are continuously drawn apart or squeezed together. For this purpose, we
choose H(t) = 1−σ t, where σ = 1 for squeezing flow and σ = −1 for drawing flow. Naturally, when σ = 1,
calculations are only valid for t < 1. For equal viscosity fluids, if r0 = 0 the interface does not move from
the channel centre line during the motion. For two superposed layers, the results depend on the starting
position of the interface, as is illustrated in Fig. 5 for the representative case λ = 0.5 and R = 20. Here and
below, calculations were started at t = 0 from rest with Vj ≡ 0 everywhere. When r0 = 0, the interface is
pulled upwards towards the less viscous fluid during squeezing motion, and pushed downwards towards
the more viscous fluid during drawing motion, as shown by the upper two lines in Fig. 5. The reverse applies
when r0 = 0.5, as is demonstrated by the lower two lines in Fig. 5. Now the interface is forced down toward
the more viscous fluid under the squeezing motion but lifted up toward the less viscous fluid during the
drawing motion. Similar observations are made at other Reynolds numbers. These results suggest that we
may be able to select an initial value, r0, such that r(t) remains constant throughout the subsequent flow.
At zero Reynolds number, the appropriate choice is r = r∗, where r∗ is given by (2.8). Taking r0 = r∗ in a
squeezing flow with λ = 0.5 and R = 20 as above, we obtain the result shown in Fig. 5 as a thick solid line.
Evidently, r is constant throughout the motion.

We now turn our attention to the case when the wall motion is time-periodic. We take H(t) = 1+� cos t,
with 0 < � < 1, in which case the flow experiences both a drawing and a squeezing motion during each
cycle. We begin by demonstrating that we may compute periodic solutions for small � consistent with the
analysis of Sect. 3.1. In Fig. 6(a), we show the profile of ψj across the channel at the time t = 10 for the case
λ = 0.5, R = 10 and � = 0.01. The interface is situated where the curves cross the axis at η = r∗ = 0.172.
The solid line shows the result of the numerical simulation, and the broken line shows the leading-order
solution �ψ(0)j in (3.10). At the time shown, the numerical solution has settled into a periodic cycle, and
the profile agrees well with that obtained from the small-amplitude analysis. Periodic solutions also exist
at larger values of the wall amplitude, as is discussed below.

In Fig. 6(b), interfacial trajectories are shown for the case λ = 0.5, � = 0.25 and R = 20.0 for a number
of different starting positions. Evidently, the long-term behaviour of the interface depends upon its initial
position. If r0 = r∗, the flow locks onto a periodic cycle and we find that r = r∗ throughout the motion. If
r0 > r∗ or r0 < r∗, the interface tends to move on average towards the upper or the lower wall, respectively,
and eventually the calculation breaks down. The closer the starting position to r∗, the longer the interface
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Fig. 5 Squeezing flow (solid line) and drawing flow (broken line) flow at λ = 0.5, R = 20, and for r0 = 0, and r0 = 0.5. The
thick solid line shows squeezing flow with r0 = r∗ = 0.172
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Fig. 6 (a) Comparison of the flow profile for the small-amplitude periodic solution (broken line) with the numerical solution
with � = 0.01 (solid line) for the case λ = 0.5 and R = 10. (b) Interfacial trajectories, r(t), for periodic wall motion with
λ = 0.5, � = 0.25 and R = 20 and starting positions r0 = −0.5, −0.25, 0, r∗, 0.25, 0.5

takes to migrate towards the wall. It seems that all initial positions r �= r∗ eventually approach either of the
two walls. The same qualitative behaviour is found on increasing the wall amplitude, but the time taken
to approach either the upper or lower wall is reduced. The situation changes when the Reynolds number
is increased, as can be seen in Fig. 7(a), which shows results for λ = 0.5, � = 0.25 and R = 40.0 for a
number of different starting positions. Clearly, there is a catchment area inside which the interface will
tend to migrate towards the periodic state at r = r∗. Outside of this region, the interface tends towards
the upper or lower wall, as is demonstrated by the curves for r0 = −0.75 and r0 = 0.75. Note that for all
results shown the interface remains trapped either in the region (−1, r∗) or in the region (r∗, 1). This need
not always be the case, as will be demonstrated below at larger wall amplitude.

The effect of varying the viscosity ratio for a flow with R = 40 and � = 0.25 is shown in Fig. 7(b). In
each case, the interface moves towards the respective value of r∗, and the flow tends to approach a periodic
state. Trajectories for different wall amplitudes are illustrated in Fig. 8(a) for the case λ = 0.5 and R = 40.
All calculations in this figure were started with r0 = 0.5. The curves for � = 0.1, 0.2, 0.3 approach the
periodic state with r = r∗ = 0.172 as the time increases beyond that shown in the figure. The smaller
the value of�, the more slowly the periodic state is approached. Evidently, the long-term behaviour of the
interface can depend markedly on the value of �. For � < 0.371, the interface tends to move downwards
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Fig. 7 (a) Interfacial trajectories, r(t), against time for λ = 0.5, R = 40.0 and � = 0.25 for r0 = −0.75, r0 = −0.5, r0 = 0.25,
r0 = 0.5, and r0 = 0.75. The dotted line corresponds to r∗ = 0.172. (b) � = 0.25, R = 40 and λ = 0.2, 0.4, 0.6, 0.8, shown as
solid lines, where the respective values of r∗ = 0.382, 0.225, 0.127, 0.056 are shown as dotted lines
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Fig. 8 Interfacial trajectory r(t) against time. (a) λ = 0.5, R = 40 and different values of �; (b) λ = 0.5, R = 40, � = 0.4 and
r0 = −0.5, 0, 0.5

towards r = r∗. For � > 0.371, it moves upwards towards the upper wall. To demonstrate the sensitivity
of the trajectory to the starting position in the flow field, we replot the curve for � = 0.4 in Fig. 8(b)
toegther with the results of the two further starting positions r0 = −0.5 and r0 = 0. The latter curves were
computed using N = 240 grid points in each fluid with a time step of δt = 0.0005. The dotted line indicates
the position of r∗ = 0.172. In all calculations shown thus far, the interface has remained trapped in the
region (−1, r∗) or (r∗, 1) depending on the starting position. At this higher value of �, the interface can
cross from one region to the other, as is illustrated by the curve for r0 = −0.5. The trajectory starting with
r0 = 0 also crosses the dotted line. It slightly overshoots r = r∗ before turning back and slowly approaching
the dotted line from above.

4 Concluding remarks

We have examined the flow of two superposed viscous layers in a channel when the motion is induced either
by the gradual squeezing together or drawing apart of the walls, or by the vertical vibration of the walls.
In the first part, we presented the solution for two-layer Stokes flow in an explicit form and described the
motion of the interface. For a particular choice of initial position, the layer thickness ratio remains constant
regardless of the motion of the walls. We then considered the stability of the flow at zero Reynolds number
by subjecting the interface to a small-amplitude spatially periodic perturbation. The accompanying velocity
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field is not spatially periodic, but consists of a periodic part and a component which grows downstream.
A Floquet analysis was used to compute the growth rates of the developing disturbance.

Earlier work by Pozrikidis and Blyth (7) showed that a stretching flow is unable to suppress the
Rayleigh–Taylor instability present for unstably stratified semi-infinite fluid layers at zero Reynolds num-
ber. However, if a bottom wall is included to bound the lower fluid, an elongational flow is able to
ultimately suppress periodic disturbances. In the present work, two parallel walls vibrate to produce an
alternately stretching and contracting flow. Working in concert, these effects are not able to suppress the
Rayleigh–Taylor instability. Rather they tend to increase the growth rate of small disturbances and extend
the range of unstable wave numbers, which grows as the amplitude of the wall vibrations is increased. The
pulsations therefore have a destabilizing effect on the flow field. Even so, vertical wall oscillations are not
sufficient on their own to destabilize a stably stratified flow.

In the second part of the paper, we have computed the basic flow of two superposed fluids in a vibrat-
ing channel at arbitrary Reynolds number under the assumption that the interface stays perfectly flat
throughout the motion. We used a numerical method to determine the trajectory of the interface. The flow
was started from rest and, in the first instance, the walls were either drawn apart or squeezed together
continuously. For an initially symmetric configuration with equal layer thicknesses, the interface tends to
migrate toward the less viscous fluid when the channel squeezes shut, and toward the more viscous fluid as
the channel walls are drawn apart. The opposite behaviour applies if, in the initial configuration, the more
viscous layer is thicker than the less viscous layer. For a judicious choice of starting position, the ratio of
the layer thicknesses stays constant during the drawing or squeezing motion.

The behaviour of the interface was also investigated when the walls vibrate up and down periodically
in time. The subsequent behaviour of the interface depends on its starting position in the flow field, and
the prevailing parameter values. At low Reynolds number, the interface tends to approach one of the two
walls. At higher Reynolds number, the interface tends to be attracted towards the position where the layer
thickness ratio remains constant and the flow becomes time-periodic. This position is solely dependent on
the viscosity ratio of the two fluids. As the wall amplitude is increased, the subsequent interfacial trajectory
becomes increasingly sensitive to its initial position in the flowfield. For some initial conditions, the flow
may approach the time-periodic state, and for others the interface may cross the time-periodic position
and head towards one of the channel walls.

The important question of the stability of the interface at finite Reynolds number has not been addressed.
Unfortunately, the same approach applied for studying the stability of Stokes flow is frustrated at finite
Reynolds number by the nonlinear inertia terms. Despite this, analytical progress may be possible via a
lubrication-type analysis, and this will form the subject of a future investigation.
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